
Implementing a Sensor Fusion Algorithm for 3D 
Orientation Detection with Inertial/Magnetic Sensors 

 

Fatemeh Abyarjoo1, Armando Barreto1, Jonathan Cofino1, Francisco R. Ortega2 

 
1Electrical and Computer Engineering Department. Florida International University. Miami, FL. USA 

2School of Computing and Information Science. Florida International University. Miami, FL. USA. 
{fabya001, barretoa, jcofi001, forte007}@fiu.edu 

 

 
Abstract— In this paper a sensor fusion algorithm is 

developed and implemented for detecting orientation in three 

dimensions. Tri-axis MEMS inertial sensors and tri-axis 

magnetometer outputs are used as input of fusion system. A 

Kalman filter is designed to compensate the inertial sensors 

errors by combining accelerometer and gyroscope data. A tilt 

compensation unit is designed to calculate the heading of the 

system. 
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I. INTRODUCTION  

Orientation tracking has a wide range of applications 

including military, surgical aid, navigation systems, mobile 
robots, gaming, virtual reality and gesture recognition [1], 
[2]. So far, orientation detections are mostly done by using 
an “externally referenced” [3] motion sensing technologies, 

for example video, radar, infrared and acoustic.  

Although these methods achieved good results in an 
indoor environment, they suffer from some limitations, like 
shadows, light interruptions, distance limitations and 
interference [4], [5]. 

An alternative approach is to use inertial sensors. Inertial 
sensors detect physical quantities of the moving object 
regardless of external references, environment lighting or 
friction. This detected movement is directly related to object, 

which sensors are attached on. Furthermore, inertial sensors 
are the self-contained technology which do not need external 
devices, like cameras or emitters. These sensors have been 
used in submarines, spacecraft and aircrafts for many years 

[6].  

Micro-Electro-Mechanical-System (MEMS) based 
inertial sensors have emerged during last decade. Due to 
their miniature size, low power consumption, and light 
weight [7], the use of inertial MEMS sensors has developed 
rapidly in recent years.  

In this paper, an algorithm is proposed to detect 
orientation in three dimensions. The inertial measurement 
unit (IMU) is composed of a tri-axis gyroscope, a tri-axis 

accelerometer, and a tri-axis magnetometer. A Kalman filter 
is implemented to yield the reliable orientation. Tilt 
compensation is applied to compensate the tilt error.  

II. DATA ACQUISITION 

Our system is composed of a tri-axis gyroscope, a tri-axis 
accelerometer and a tri-axis magnetometer. Our sampling 
rate is 8.96 samples per second. The gyroscope resolution is 
16 bits and the sensitivity is 0.007˚/sec/digit. The 
accelerometer sensitivity is 0.00024g/digit. Raw data were 
acquired while the sensors were stationary on the desk. In 
Figure 1, the raw data extracted from sensors are shown. 

 

Figure 1: Raw data 

The raw data are not ready to use and they need to be 

calibrated. To calibrate these data, scale and bias must be 
taken into account. The bias represents how far the center of 
data is from the zero. The scale means how much larger the 
range of data from the sensor is than the real meaningful 

data.  

Figure 2 presents the calibrated data from the gyroscope, 
the accelerometer and the magnetometer respectively. It can 
be observed that in the accelerometer calibrated data, X and 
Y axes are approximately zero and the Z-axis is -1. The axes 

X and Y are zero because there is no acceleration in these 
axes. In fact, the only acceleration present is the earth’s 
gravity, which is along the Z-axis pointed downward. This is 
the reason for measuring a negative number in the Z-axis. 

The hardware was stationary when the data were 
recorded and no rotational movement was applied to the 



system. Therefore, the gyroscope did not record rate of 
rotation. The fluctuations which are seen are white noise. 
This noise is inseparable from the gyroscope data; it will 
cause the drift in the rotational angle, which is obtained 

based on the gyroscope’s data.  

 

 

Figure 2: Calibrated data 

III. METHOD 

MEMS gyroscopes use the Coriolis acceleration effect 
on a vibrating mass to detect angular rotation. The 
gyroscope measures the angular velocity, which is linear to 

rate of rotation. It responds quickly and accurately and the 
rotation can be computed by time-integrating the gyroscope 
output. Figure 3 depicts the rotational angle, which is 
obtained by the trapezoidal integration from the gyroscope 

signal.  

 

 

Figure 3: Drifting Rotation angle calculated by the 

Gyroscope integration 

 

Trapezoidal integration method equation [8] is shown in 

equation 1. 

� f�x�dx = �b − a�f�a� + 1
2

�

�
�b − a�[f�b� − f�a�] (1) 

The computed result drifts over time and after 

approximately 30 seconds it drifts down about 50 degrees. 
The explanation for this phenomenon is that the integration 
accumulates the noise over time and turns noise into the 

drift, which yields unacceptable results. 

In fact, the integration result is less noisy than the 
gyroscope signal but there is more drift present. One good 
aspect of the gyroscope is that it is not affected by earth’s 

gravity. 

Accelerometers measure linear acceleration based on the 
acceleration of gravity [9]. The problem with 
accelerometers is that they measure both acceleration due to 
the device’s linear movement and acceleration due to earth’s 

gravity, which is pointing toward the earth. Since it cannot 
distinguish between these two accelerations, there is a need 
to separate gravity and motion acceleration by filtering. 
Filtering makes the response sluggish and it is the reason 

why the accelerometer is mostly used by the gyroscope. 

By utilizing the accelerometer output, rotation around 
the X- axis (roll) and around the Y-axis (pitch) can be 
calculated. If Accel_X, Accel_Y, and Accel_Z are 

accelerometer measurements in the X-, Y- and Z-axes 
respectively, equations 2 and 3 show how to calculate the 
pitch and roll angles: 

 

Pitch = arctan	� Accel_X
�Accel_X�� + �Accel_Z��� 

�2� 

Roll = arctan	� Accel_Y
�Accel_Y�� + �Accel_Z��� 

�3� 
 
These equations provide angles in radians and they can 

be converted to degrees later. Figure 4 presents the rotation 

angle, which is computed by using the accelerometer signal. 
Despite recording this signal in a much longer interval, 
contrary to Figure 3, no drift is observed in Figure 4, but it 
is noisier. 



 

Figure 4: Noisy Rotation angle calculated by the 

Accelerometer 	
In order to measure rotation around the Z-axis (yaw), the 

other sensors need to be incorporated with the 

accelerometer. 

It has now been observed that neither the accelerometer 

nor the gyroscope provides accurate rotation measurements 
alone. This is the reason to implement a sensor fusion 
algorithm to compensate for the weakness of each sensor by 

utilizing other sensors. 

IV. SYSTEM CONFIGURATION 

The applied sensor fusion system is depicted in Figure 5. 
The calibrated accelerometer signal is used to obtain roll* 
and pitch* by equations 2 and 3. Roll* and pitch* are noisy 

calculations and the algorithm combines them with the 
gyroscope signal through a Kalman filter to acquire clean 
and not-drifting roll and pitch angles. On other hand, a tilt 
compensation unit is implemented, which uses a 

magnetometer signal in combination with roll and pitch to 
calculate the challenging yaw rotation. 

 

Figure 5:System Structure 

 

A. Kalman Filter 

Kalman filtering is a recursive algorithm which is 
theoretically ideal for fusion the noisy data. Implementation 
of the Kalman filter calls for physical properties of the 
system. Kalman filter estimates the state of system at a time 

(t) by using the state of system at time (t-1). The system 
should be described in a state space form, like the 

following: 

%&'( = )%& + *& 	 �4�	
,& = -%& + .& 	 �5�	

 

Where; %&is the state vector at time k, A is the state 

transition matrix, *&is the state transition noise,	,&is 
measurement of x at time k, H is the observation matrix and 

.&is the measurement noise. State variables are the physical 

quantity of the system like velocity, position, etc. 

Matrix A describes how the system changes with time 
and matrix H represents the relationship between the state 
variable and the measurement. In our Kalman filter input 
vector is defined as follows: 

x = 0ωφ3 (6) 

A = 01 −∆t
0 1 3 (7) 

H=[1 0]	 (8) 

 

Where 7 is the angular velocity from the gyroscope, and 

ϕ is the rotation angle, which is calculated by the 
accelerometer signal. To implement the Kalman filter, the 

steps in algorithm 1 should be executed [10]. The A, H, Q 
and R should be calculated before implementing the filter. Q 

and R are covariance matrices of *&	and	*& 	respectively, 

which are diagonal matrices. 8& is the system measurement 

and %9& is the filter output. 

 

Algorithm 1 

 

1. Set initial values, 

:; = 0, %9; = 0 

2. State prediction; the superscript ‘-‘means predicted 
value. This step uses the state from the previous time 
point to estimate the state at the current time point. 

%9&< = )%9&<( 

3. Error covariance prediction; this step uses error 
covariance from the previous time point to estimate 
the error covariance at the current time point. 

:&< = ):&<()= + > 

4. Kalman gain computation; H and R are computed 

outside the filter, and :&<comes from the previous 
step. Kalman gain is the weight used for the 
computation of the estimate and it updates for each 

time step base on error covariance. 

															?& = :&<-=�-:&<-= + @�<( 



5. Estimate computation; in this step, the algorithm 
compensates the difference between measurement 
and prediction. This is the output of the filter. 

								%9& = %9&< +?&-=�,& − -%9&<�  

6. Error covariance computation; error covariance 
indicates the degree of estimation accuracy. Larger 

:& shows bigger error in estimation. 

:& = :&< − ?&-:&< 
7. Loop to step 2; 

 

Β. Tilt Compensation 

As mentioned earlier, computing the rotation around the 
Z-axis is challenging (the Z-axis is perpendicular to the 

earth’s surface.). This angle is also called the heading or 
azimuth. If the gyroscope is used to calculate the heading, 
not only is the drift problem encountered, but the initial 
heading must be known [11]. 

The earth’s magnetic field is parallel to the earth’s 
surface. Therefore, while the tri-axis magnetometer is 
parallel with the earth’s surface, it can measure the heading 
accurately through the direction of the earth’s magnetic field 
[12]. However, in most applications, the magnetometer is 

attached to the object and it moves with the object and goes 
out of the horizontal plane. 

By tilting the magnetometer, the direction of axial 

sensitivity will change [13]. Consequently, it will be 
difficult to measure the heading. Depending on how much 
the magnetometer tilts, different amounts of error appear in 
the calculations. 

The tilt compensation process maps the magnetometer 
data to the horizontal plane and provides the accurate 
heading calculation regardless of the position of the 
magnetometer. 

The roll and pitch angles are utilized in combination 

with magnetometer data to correct the tilt error, regardless 
of the magnetometer’s position. 

As Figure 5 shows, the roll and pitch angles come from 

Kalman filter output. 

If AB , AC 	, and AD are calibrated and normalized 

magnetometer outputs, and α, β and γ present roll, pitch and 
yaw respectively, the heading is calculated by equation (9). 
Equations 7 and 8 are used to transform the magnetometer 

reading to the horizontal plane. When magnetometer data is 
in the flat plane, equation 9 obtains a reliable calculation. 

 

XH = mF cos�β� + mI sin�β� sin�α�
+ mK sin�β� cos	�α� 

�7� 
YH = mI cos�α� + mK sin�α� �8� 

γ = atan2�−YHXH � �9� 
 

The difference between the regular inverse tangent and 
the MATLAB’s command “atan2” is that the first one 
returns the results in the range of [-π/2, π/2], while “atan2” 
calculates the results in the range of [-π, π]. 

V. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the proposed 
system, some experiments were performed to measure the 
Euler orientation. Initially, the hardware was manually 

moved back and forth in the horizontal plane. It was 
observed that roll and pitch angles remained constant during 
this movement. A little fluctuation has been observed in yaw 
angles, which is because of hand fluctuation while the 

hardware was moved. It proves the system can detect even 
small fluctuations. The experiment was repeated in both 
planes, which are perpendicular to the X-axis and 
perpendicular to the Y-axis as well. Observations proved that 

the system could track both roll and pitch angles accurately. 
In the both roll and pitch movement, the hand fluctuations 
can be observed. 

The Kalman filter was designed to estimate the 
orientation. To evaluate the performance of Kalman filter, an 

experiment was carried out. Back and forth movements 
around X-axis were applied to the hardware. The roll angle 
was obtained by integrating the gyroscope output and then it 
was compared with the result from the Kalman filter. In 

Figure 6 the results are depicted. Dash-dot line shows the 
results come from the gyroscope integration by the 
trapezoidal integration method and the solid line shows the 
output from the Kalman filter. Down-drift is seen clearly in 
the result from integration while this drift is eliminated in 
Kalman filter results. 

 

 

Figure 6: Comparison between the Kalman filter’s output 
and the gyroscope integration result 

Evaluation of Kalman filter’s performance continued by 
comparing the rotation angle from accelerometer with the 

Kalman filter output.In Figure 7, the red solid line presents 
the filter output and the blue solid line is the angle calculated 
by the accelerometer output. It is clearly observed that all 
fluctuation, which is seen in the accelerometer output, is 

eliminated successfully in by the filter.   



 

Figure 7: Comparison between Kalman filter output and the 
accelerometer result 

VI. CONCLUSION 

In this paper, a method was proposed to detect the 
orientation in 3 dimensions by utilizing micro-
electromechanical sensors. 

An efficient algorithm was proposed to deal with inertial 

sensors’s weakness based on the Kalman filter 
implementation. Heading compensation is applied to the 
system to provide accurate orientation around Z-axis in any 
position. The experimental results proved the performance of 

the proposed algorithm. 

Our next step will be expanding the algorithm such that it 
can measure the position in three dimensions. 
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